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The problem of the occurrence of hydraulic shock in various engineering devices has 
long attracted the attention of investigators. For example, in [i] the hydraulic shock model 
of Zhukov was generalized with allowance for nonlinearity and friction in a quasistatic form- 
ulation. Here, hydraulic shock was considered to have been caused by a change in the flow 
regime at one end of a tubular conduit and was calculated by the method of successive ap- 
proximations. The motion of a compressible viscous Newtonian fluid in an elastic shell was 
examined in [2] with allowance for its inertial properties. It was determined in [3] that 
the equation of state of water in the Tate form can be linearized at shock pressures lower 
than i00 MPa. In [4], the Zhukov model was used to examine hydraulic shock in cooling sys- 
tems caused by the action of a distributed live load and inertial body forces on the system. 
The method of isolating a discontinuity of distributed live load (i.e., an examination of 
the conditions of mass and momentum conservation at a discontinuity) was used in [4] to con- 
struct an analytic solution in a linear approximation. In the present study, we show that 
this approach is acceptable only for subsonic regimes of motion of a live load. It was em- 
phasized in [5] that Zhukov's model has made it possible to solve a number of complex engi- 
neering problems, including the propagation of waves in tubes of variable cross section and 
in coaxial tubes. However, it was also pointed out that this theory cannot explain wave 
dispersion, wavelike changes in pressure near fronts, etc. Other shortcomings of the Zhukov 
model include its unclosed nature, such as is manifest in problems involving resonance. The 
author of [6] examined asymptotic solutions for resonance regimes that are encountered in 
different engineering problems. In the present study, we use the method of characteristics 
within the framework of the Zhukov model of hydraulic shock to find an analytic solution to 
a Cauchy problem for equations describing a hydraulic shock caused by a distributed load 
traveling along the axis of an elasticallydeformable tube. Exact solutions are obtained 
for both the steady-state case and for linear resonance. The transition through resonance 
is described within the framework of an asymptotic approach. A comparative study is made of 
steady and unsteady solutions, as well as of methods of isolating and spreading out discon- 
tinuities of the distributed live load. 

We will examine a long circular cylindrical tube containing a flow of an incompressible 
barotropic ideal fluid in drop form (water, for example). It should be noted that the mathe- 
matical model examined below also describes the case of two coaxial tubes when liquid circu- 
lates in the resulting gap and a live load travels over the inside surface of the inner tube 
[4] or the outside surface of the outer tube. 

The behavior of the fluid in engineering devices conforming to the arrangement just 
given is described in a hydraulic approximation by the following system of equations [4]: 

aPFa~ + a~Fa___~__ = O; ( 1 ) 

Opu.F a aF 
0----7-- + ~ [9ueF + pF] = p 7-S' (P + B)/gm = eons t ,  ( 2 )  

F =  F o - A l p +  A2p. 

Here, p, p and u are the mean density, pressure, and velocity of the fluid in a fixed sec- 
tion of the channel with the stationary coordinate x; F is the cross-sectional area of the 
channel; P is the distributed live load; t is time; B and m are constants in the condition 
of barotropy of the fluid; F0, A1, and A 2 are constants in the equation for the area of the 
channel (formulas for these constants were presented in [4] for a system of coaxial tubes). 
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Using the following relations to change over from a stationary coordinate system x to 
a system of coordinates X moving at the velocity V(t), 

t ( 3 ) x = X 4  5~(t), ~ ( t ) = j V ( t ) d t ,  u = ( o +  V(t) 
o 

and l i n e a r i z i n g ,  we c a n  r e p r e s e n t  h y p e r b o l i c  e q u a t i o n s  ( 1 ) ,  ( 2 )  i n  p a r t i a l  d e r i v a t i v e s  i n  
t h e  f o l l o w i n g  c h a r a c t e r i s t i c  f o r m  

W + ( - -  V +_ co) ~ y  o) + V -+- - -  ~ Co p = - - / ( X , t ) ,  
9o% -Poe (4) 

A~ OP (X, t) 
/ (X ,  t) = Co Fo ox ' 

where ~ is the mean velocity of the fluid in the moving coordinate system X; O0 is the line- 
arized value of the density of the fluid; c o is the linearized value of the speed of sound 
in the fluid in a channel with elastic walls (or the velocity of hydraulic shock in accord- 
ance with the Zhukov model). 

With known values of p(X, 0) and ~(X, 0), the general solution of the Cauchy problem 
for system (4) has the form 

r 

I I~ (T, 0) + ~ (% 0) + p (~' 0) + p (~, o) + ( 5 )  ~o ( x ,  t) = - v (t) + v (o) + T Po% 

t 

tP o ) -  P o)j - .t-  t l ( -  + + + 
0 

0 

+ / ( - -  ~(z) + eo z + % z)l dz]; 

p (X, t) = - - y -  p~176 {o~ (% O) - -  o) (% O) + p (~' o) + p (n, o) + ( 6 ) 
�9 P o C o  

A s 
+ C~ -~o [2P (X, t) - -  P (~, 0) - -  P (B, 0)1 + 

+ [,, [[ (-- ~ (z) -- Co z + 4, z) -- / (-- ~ (z) + Co z + "~,: z)] , 
0 

-c = x + ~ ( t ) -  Cot, ~ = x + ~(t) + Cot. 

S o l u t i o n s ,  ( 5 )  and  ( 6 )  d e s c r i b e  b o t h  f r e e  and  f o r c e d  o s c i l l a t i o n s  o f  f l u i d  i n  a c h a n n e l  
with elastic walls. Forced vibrations develop under the influence of the live load P on a 
channel containing fluid. Free vibrations, due to the initial conditions, are not studied 
here. We will further assume that the load P can be represented in the form P(X, t) = P0(t)" 

,p(X). 

We will examine several modes of motion of P, making it possible to distinguish between 
the steady and unsteady solutions. The quadratures of solutions (5) and (6) can becalculated 
exactly for the first two regimes (steady-state regime and linear resonance). For the gen-- 
eral case of motion of the load P, solutions infinite form can be obtained only asymptotical- 
ly. 

i. We obtain the steady-state regime with P0(t) = const, V(t) = V 0 = const and V 0 # c o 

(M = V0/c 0 ~ I) for t > 0. As an example, let us calculate the steady solution with 

V(t) = Vo0(t), P(X, t) -~ R0(t)~(X) = O(t)Pc(X), (7)  

where 0(t) = 1 at t -> 0; 0(t) = 0 at t < 0. Exact calculation of the integrals in (5)-(6) 
gives us the solution for forced vibrations in the form 

~ ~ 1 7 6  M - t  M - - t  M + l  ' 

p (X, t) = 00cg2 A~e__s !- 2M ~ ~ . - MP~ (~)l P~ (n) ] 

I t  f o l l o w s  f r o m  t h i s  t h a t  t h e  s t e a d y  s o l u t i o n  d e p e n d s  on t h e  s t e a d y  l o a d  Pc and  i t s  v e l o c i t y .  
The s o l u t i o n  b e c o m e s  s i n g u l a r  a t  M = 1, so  t h a t  i t  m u s t  be  r e j e c t e d  f r o m  a p h y s i c a l  v i e w -  
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point. In fact, it can be proven that there are no steady solutions for M = i (the linear 
resonance examined below takes place at M = i). We will assign the function ~(X) in the 
form of a spread-out step by means of the expression 

z 

2 

0 

At n + ~ ~(X) + 8(-X), i.e., the function ~(X) becomes the step function, while the steady 
solution at this point is the regular generalized similarity solution for which Fig. 1 shows 
the wave patterns and distribution of pressure p. Here, the pressure is referred to Pc = 
P0C02(Al/F0)R for the subsonic (a, M < i) and supersonic (b, M > i) regimes of motion of the 
load P. The asymptote n + ~ signifies the transition to the method of isolation of a dis- 
continuity in the load P [4]. This transition is proper from a mathematical viewpoint (lead- 
ing to regular generalized functions), as well as from a physical viewpoint (the solutions 
are finite). It should be noted that the value of n does not affect the maximum of the 
solution in the given case. Thus, the method of spreading of the discontinuity in the load 
P (method of through computing), for which n is finite, gives the same result as the method 
of isolation of a discontinuity of P (n + ~) when used to calculate the maxima of hydrodynam- 
ic parameters. Given sufficiently large t, the fronts of waves propagating over the char- 
acteristic curves of families I and II travel quite far and in the neighborhood of the dis- 
continuity of Pc (section X = 0) have the steady solutions examined in [7]. 

Assigning conditions similar to (7), we can also obtain other steady solutions. 

2. A linear resonance occurs at P0(t) = const, V(t) = V 0 = const and V 0 = c o (M = I) 
for t > 0. To calculate the solution in this case, as above we use conditions (7). Here, 
we assume that V 0 = c o in these conditions. Exactly calculating the integrals in (5) and 
(6), we find the following solution for forced vibrations during linear resonance 

~(X,t)= co - - l - - - 2 ~ t - ~ % t  + 

p ( X ,  t) Po% A: [ 2 P c ( X )  § - -  -5-2-cot], 
2 F o 

w h i c h ,  i n  c o n t r a s t  t o  t h e  s o l u t i o n  o b t a i n e d  a b o v e ,  c o n t a i n s  a n o n t r i v i a l  u n s t e a d y  t e r m ,  
whe re  3Pc~ DX ~ O. At  t h e s e  p o i n t s ,  t h e  p a r a m e t e r s  i n c r e a s e  l i n e a r l y  o v e r  t i m e ,  and  a t  t + 
~,  p + ~,  w + ~ ( i t  c a n  be s e e n  f rom t h e  n u m e r i c a l  c a l c u l a t i o n s  f o r  t h e  n o n l i n e a r  mode l  
t h a t  t h e  h y d r o d y n a m i c  p a r a m e t e r s  t u r n  o u t  t o  be  f i n i t e  i n  n o n l i n e a r  r e s o n a n c e ) .  C a l c u l a t i n g  

the derivative 8Pc/aX = -R y'~ exp(-n/2 • X2), we see that the unsteady part of the re- 

suiting solution is proportional to the square root of the number of the S-like sequence n, 
i.e., it depends on how the load P is spread out. Since the unidimensional model does not 
given any information on the spreading, it is essentially unclosed, and its closure requires 
either experimental data or calculations for three dimensions. It is clear that n is finite 
for physically realistic motions. Thus, any method of through computing is actually the 
method of spreading out the discontinuity of the load P (for the isolation method, n = ~). 
The asymptotic solution n § ~ is correct from a mathematical viewpoint, since it leads to 
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singular generalized solutions. However, it is incorrect from a physical viewpoint, since 
it leads to infinite hydraulic shock pressures. The latter is inconsistent with both the 
physical meaning of the problem and with experimental results. This means that a linear 
resonance cannot be calculated by the method of discontinuity of the load P. To calculate a 
linear resonance by the method of spreading of the load P, it is necessary to know n. Hav- 
ing taken initial relations different from (7), we can also obtain other solutions for a 
linear resonance. 

3. Let us examine the general case of motion of the load P. We impose the natural limita- 
tion W > 0 on the law of motion ~(t), i.e., we assume that the motion of P is accelerated. 
Given this restriction on $(t), the characteristic curves of family I (~ = const) intersect 
X = 0 twice in the general case, while the curves of family II (q = const) intersect X = 0 
once. We will calculate the asymptote of the integrals in solution (5), (6) at n + ~, when 
the front of the load P becomes discontinuous. In this case, the stationary points obtained 
with calculation of the integrals by the Laplace method are the points of intersection of 
the characteristic curves of families I and II with the law of motion (X = 0) of the discon- 
tinuity of the load P. The resulting solution has a generalized (piecewise-continuous) 
structure. In the relations presented below for the corresponding regions 1-7 (Fig. 2a), 
the equal sign is replaced by the asymptote sign, while the exponentially small terms that 
approach zero as n + ~ are discarded: 

t) T > 0  n X > 0 :  
o ) ( x ,  t) ,-.  - v ( t ) ,  p ( x ,  t) ~ o; 

2) " ~ > 0  0 X < 0 :  

[ "/" l 
t A1 Po(Zl) + M(z) o~ (x, t) ..~ - v (t) + ~ ~O-~o ~ (q) - ~ ~ + ~ ' 

~  ' [  Vo(q) Vo(Z2) ]} 
p (x, t) ~ ~oCa -~o Po (t) + 7 M ( q ) -  ~ M (~) + ~ ; 

3) % > T > 0 f 3 X > 0 :  
1 AJ PO (Z3) t 2 At P0 (z3) 

' --f p~176 F o t - M (%) to (X, t) ~ -- V (t) + T Co ~'o ~ - ~ (%) p (X, t) ~ 

4) t , > t > 0  /3 X < 0  N t > z , :  
1 A1 I Po(za) Po(Zl) _}_ Po(Z2) ] 

~o ( x ,  t) ~ - v (t) + 7 ~O-~o J - M (~) + M (~)  - -  ~ M (~)  + ~ ' 

--{ ~ [ p0 (Z3) /~ P0 (g2)]} 
p(X,t)~,ooOC ~A~Fo P o ( t ) + T  1 - M ( ~ )  + M ( q ) - - ~ - - M ( ~ ) + ~  ; 

5) ~c = % N t > z , :  

t A1 [ ~ / - n l / ~ t . 2 t 6 3 +  M ( z 2 ) + l ] ,  ~o (x ,  t) ~ - v (t) + -2 ~o To  Po (~,) Po (~) 

-~. ~ 1,2163 M(z2)_r t ; p (x, t) ..~ pod -~o Po (t) + ~ 

6) ( o < ~  < ~ ,  n x <  o)u 0 1 >  q, ~ ~ < T , ) :  
1 Ai Po (z2) 

o ) ( X , t ) ~ - - V ( t )  + ~-c o Fo M ( z 2 ) + l '  

A,[ ~ Po(%) ] 
p ( X , t ) ~ p o C ~  Po(t) 2 M(z2)--?l ; 
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Here, M(z) = V(z)/c0; 

7) ~1 < O: 

o) ( x ,  t)  ~ - v ( t ) ,  p ( X ,  t)  ~ Ax ,~ poCo -?-- ~o (t). 
o 

z~ = =1(~), z~ = z~(~), =~ = z.(~); ( 8 )  

where z z and z 3 are the larger and smaller values of the time of intersection of the curves 
of family I with X = 0; z 2 is the time of intersection of the curves of family II with X = 

0. 

At n + ~, the resulting generalized solution becomes a singular generalized solution 
(see Part 2). The values of the hydrodynamic parameters are singular on the characteristic 
curve �9 = ~, at t > z,. Thus, the method of isolation of the discontinuity of the load P 
cannot be used to calculate the transition through M = 1 and the subsequent motion. To do 
this by the method of spreading of the discontinuity of P, it is necessary to determine the 
value of n. This can be done by comparing the calculations from the unidimensional model 
with the results of an experiment or calculations performed for three dimensions, i.e., it 
can be done by solving a problem of parametric identification for the given mechanical sys- 
tem. 

For a system of finite length, it is necessary to allow for the left and right boundary 
conditions. In this case, the solution in Part 3 needs to be written by means of Eqs. (3) 
in the moving coordinate system (Fig. 2b) and to be modified so that it contains arbitrary 
functions �9 and q for satisfaction of the right and left boundary conditions. 

It follows from the solution in Part 3 with finite n that the hydrodynamic parameters 
on the characteristic curve ~ = T, at t > z, depend on the acceleration at the point (0, z,) 
of the plane (X, t) (see Fig. 2a). For other regions, the solution depends on the load 
P and its relative velocity M = V/c 0 , as for steady or regular generalized similarity solu- 
tions. Thus, in [8] these solutions were referred to as being quasisimilar. In essence, 
this term signifies solutions obtained by the method of isolation of a discontinuity of 
the load P (n = ~). The quasisimilar solutions that exist at M < 1 are limiting (yield the 
maximum values of shock pressure) in relation to the actual motions of the load P. Compar- 
ing the equations in Parts 1 and 3 for region 3, we see that the values ~of p and ~ on the 
corresponding characteristic curves ~ = const in region 3 will be the same as for regular 
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generalized similarity solutions with the values of P and V at the moment of the first inter- 
section of the characteristic curve of family I and the law of motion of the load P (X = 0). 

Comparing the solutions in Parts 2 and 3, we see that with any finite n the maximum 
pressures (in region 5) will be finite at any moment of time for accelerated motion of the 
load P(W(z,) ~ 0) and that P0(z,) will also be finite. Meanwhile, this will be true for 
both linear resonance and for finite n when t + ~, p + =. The deDendence on n in the case 

of linear resonance (~n enters into the formulas {n Part 2) is greater than with aN accel- 

erated transition through M = 1 ( ~n goes into the formulas for region 5 in Part 3). 

In the general case, Eqs. (8) can be obtained only numerically (or graphically which is 
considerably simpler) on the basis of the solution of the nonlinear equations $(z) = c0z + 
T, $(z) = -c0z + D. The exact solution of these equations can be found, for example, in the 
case of equal accelerated motion of a discontinuity of the load P with the law of motion $ = 
Wt2/2: 

z2=  W + +-W-' 

z~= ~-- W +~" 

Assuming P(X, t) = RO(t) ~ (X), we obtain the solution in Fig. 3, which can readily be 
analyzed by the methods of mathematical analysis. At n § ~, ~(X)-+O(--X) will also coin- 
cide with the solution in [8], obtained by the method of isolation of a discontinuity of the 
load P at M < i. 

Figure 3 shows the distribution of fluid pressure in the moving coordinate system for 
t I = c0/2W (M = 1/2), t 2 = c0/W (M = i), ts = 3/2 • c0/W (M = 3/2), t 4 = 5/2 • c0/W (M = 5/2) 
and wave configuration associated with the asymptotic solution for equal accelerated motion 
of a steady load P; i-7 are regions with a continuous distribution of pressure and fluid 
velocity, ~, = -c02/2W. 

The above analytical results can be used to refine and test numerical algorithms. They 
also help us understand certain features of numerical solutions of unidimensional hydraulic- 
shock problems that arise in the motion of a discontinuity of a load P. 

In conclusion, we noted that the problem of nonclosure arises only in a unidimensional 
description of hydraulic shock and that the unidimensional model gives only one value of 
critical velocity at which resonance takes place. 
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